Dmitry Zenkov
Mathematics
- Phone: 919.515.4201
- Email: dvzenkov@ncsu.edu
- Office: 3150 SAS Hall
- Website: https://math.sciences.ncsu.edu/people/dvzenkov/
Publications
- Discrete Hamiltonian Variational Mechanics and Hamel's Integrators
- Gao, S., Shi, D., & Zenkov, D. V. (2023), JOURNAL OF NONLINEAR SCIENCE, 33(2). https://doi.org/10.1007/s00332-022-09875-w
- Discrete Hamiltonian Variational Mechanics and Hamel's Integrators (vol 33, 26, 2023)
- Gao, S., Shi, D., & Zenkov, D. V. (2023, April), JOURNAL OF NONLINEAR SCIENCE, Vol. 33. https://doi.org/10.1007/s00332-023-09890-5
- A Variational Integrator for the Chaplygin-Timoshenko Sleigh
- An, Z., Gao, S., Shi, D., & Zenkov, D. V. (2020), JOURNAL OF NONLINEAR SCIENCE, 30(4), 1381–1419. https://doi.org/10.1007/s00332-020-09611-2
- Hamel's Formalism for Classical Field Theories
- Shi, D., Zenkov, D. V., & Bloch, A. M. (2020), JOURNAL OF NONLINEAR SCIENCE, 30(4), 1307–1353. https://doi.org/10.1007/s00332-020-09609-w
- Hamel's Formalism for Infinite-Dimensional Mechanical Systems
- Shi, D., Berchenko-Kogan, Y., Zenkov, D. V., & Bloch, A. M. (2017), JOURNAL OF NONLINEAR SCIENCE, 27(1), 241–283. https://doi.org/10.1007/s00332-016-9332-7
- ON HAMEL'S EQUATIONS
- Zenkov, D. V. (2016), THEORETICAL AND APPLIED MECHANICS, 43(2), 191–220. https://doi.org/10.2298/tam160612011z
- The Helmholtz Conditions and the Method of Controlled Lagrangians
- Bloch, A. M., Krupka, D., & Zenkov, D. V. (2015), INVERSE PROBLEM OF THE CALCULUS OF VARIATIONS: LOCAL AND GLOBAL THEORY, pp. 1–29. https://doi.org/10.2991/978-94-6239-109-3_1
- The inverse problem of the calculus of variations: Local and global theory
- , . (2015). https://doi.org/10.2991/978-94-6239-109-3
- The geometry and integrability of the Suslov problem
- Fernandez, O. E., Bloch, A. M., & Zenkov, D. V. (2014), JOURNAL OF MATHEMATICAL PHYSICS, 55(11). https://doi.org/10.1063/1.4901754
- A Fiber Bundle Approach to the Transpositional Relations in Nonholonomic Mechanics
- Maruskin, J. M., Bloch, A. M., Marsden, J. E., & Zenkov, D. V. (2012), JOURNAL OF NONLINEAR SCIENCE, 22(4), 431–461. https://doi.org/10.1007/s00332-012-9144-3